Unit 1 CodeBot Python Code By Mission

Mission 2 — Introducing CodeBot

Import from botcore
only leds functions

from botcore import leds

Turn on one user
LED

leds.user_num(©,

— parameters are (LED number O-7, True=on or False=0ff)

Line sensor LED

leds.1ls num(®@,

— parameters are (LED number 0-4, True=on or False=0ff)

Mission 3 — Time and

Motion (Objectives 1-6)

CodeSpace
Debugger

DEBUG then use the = STEP IN button to step through your code.

Import a delay

from time import sleep

Use sleep()

sleep(1.0)

— will sleep (amount of time in seconds)

Define a variable

ay = 1.8
delay Lol (define variables at the top of the code, just under import
statements)
Use a variable with
sieep(sleep(delay)

Turn off an LED

leds.user num(2,

Turn on three types
of LEDs

User LEDs (middle of the bot)
Line sensor LEDs (across the front)
leds.ls num(®, Proximity sensor LEDs (one on each side)

leds.user_num(®,

leds.prox_num(®,

Use binary
designation for
turning on LEDs

leds.user(@8ble1081018) .
- i - Ob for binary, then O=off, 1=on for each LED

leds.1s(@b11111)

Mission 3 — Time and

Motion (Objectives 7-9)

Import entire library

I

botcore
— *is a wildcard, which means everything

Turn on motors

motors.enable(

— must be done before motors will turn and wheels move

Power a motor

motors.run(LEFT, 50)

— will turn left wheel forward at 50% power

motors.run(RIGHT, -50)

— will turn right wheel backward at 50% power

Turn off motors

motors.enable(

Mission 3 — Time and

Motion (Objectives 10-11)

Returns Boolean
value button was
pressed

buttons.was pressed(®
o —P - I: } — checks button 0O, returns True (pressed) or False (not

pressed)

Use button press in
branching

buttons.was_pressed(®e

buttons.was pressed(1):

Mission 4 — Animatro

nics (Objectives 1-5)

Infinite loop

Updating a variable

n_led = n_led + 1

Use debugger to
view variables

Open the
console panel
while
debugging

Variables

Reset a variable to
stay within a range

n led = n led + 1
n led == 8:
n led = @

Break out of a loop

Increment

ests = n_guests + 1] count = count + 1

Turn on LED using a
variable

leds.1ls num(n guests,

Mission 4 — Animatro

nics (Objectives 6-12)

Play a tone on the
speaker

spkr.pitch(440)

sleep(0.1)

the (argument) is the pitch frequency

Turn off the speaker

spkr.off()

Debounce a button
press

buttons.was pressed(9)

While loop

count < 16: . ,)
(will iterate, or repeat, 10 times if count starts at O)

Import random
library

random randrange

Get a random
number within a
range

randrange (160, 1000)

Define a function

flashLEDs():

leds.user(@b11111111) note(freq, duration):

spkr.pitch(freq)

sleep(@.5) sleep(duration)
leds.user(8booeeoeee) spkr.off()
sleep(0.5) sleep(0.05)
Call a function _
flashLEDs() |note(F4, 0.4)
Mission 5 - Fence Patrol

Read a line sensor

1s.read(num)

val = ls.read(n)

(returns a value between 0 and 4095)

Display the value of
a variable in the
console

Assign a Boolean
result of a
comparison to a
variable

Use the Boolean
variable in code

threshold
is _detected val < threshold
leds.ls num(®, is detected)

Detection

Dark line on light surface — use val > threshold
Light line on dark surface — use val < threshold

Use a comparison
with a while loop
and use the control
variable as an
argumentin a
function call

detect line(n)

n n+1

Wait loop
(safe driving)

buttons.was pressed(9):

Return statement

Call to a function
that has a return

hit = scan_lines() detect line(count):

Use a variable to
turn on LEDs

leds.useF(line_caunt)

line_count will be from O to 255

Wrap-around the
line_count variable
for binary numbers

line count = line count + 1
line count == 256:
line count = ©

Mission 6 - Line Follower

Create a list

Update a specific
value in a list

Use a list with LEDs

vals = check_lines(threshold)
leds.1s(vals)

Botcore line sensors
function (similar to
check_lines) but
faster

vals = ls.check(thresh, is reflective)
leds.1ls(vals)

Is.check() takes 2 parameters
It has a second parameter is_reflective that controls whether "detected" means the sensor is
» thresh OF < thresh.

Using or (logical
operator)

vals[1] vals[2] VEIEIETE

can have two or more conditions;
if any of the conditions are true, the statement will evaluate to true

Comparing with a
tuple

Code needed to
change a global
variable inside a
function

Built-in math
operations

Mission 7 - Hot Pursuit

Read the proximity
sensors

prox.detect()

returns a tuple (left, right) with values True or False
vals = prox.detect()
left detected = vals[@]

right detected = vals[1]

Index values: O = left 1= right

Proximity LEDs

p = prox.detect()

leds.prox(p)

Use parameters

P = prox.detect(power, threshold)
Power is the “bot flashlight” with settings from 1to 8 (high power)
Threshold is the sensitivity level, with settings from 1to 100 (how much light is needed to detect)

Another built-in
function that finds
the ideal thresh for a
given environment

(num_samples, power, range_low, range_high)

Toggle the motors
on and off — can be
used with a button
press to turn on/off
the motors

go_motors
go_motors

not go _motors

go_motors

not go _motors

